A generic translation from case trees to eliminators

Kayleigh Lieverse, Lucas Escot, Jesper Cockx

Dependently Typed Languages

- Program + Proof
- Limitation: errors in elaboration

Pattern Matching and Eliminators

Dependent Pattern Matching and Eliminators

data Vec (A : Set) : $N \rightarrow Set$ where nil : Vec A zero cons : (n : N) \rightarrow A \rightarrow Vec A n \rightarrow Vec A (suc n)

From Pattern Matching to Case Trees

data N : Set where									
zero : N									
suc : $N \rightarrow N$									
$+$: N \rightarrow N \rightarrow N									
zero + m = m									
suc n + m = suc (n + m)									

$$[(n:\mathbb{N})(m:\mathbb{N})] \underline{n} m \begin{cases} [(m:\mathbb{N})] \text{ zero } m \mapsto m \\ [(n:\mathbb{N})(m:\mathbb{N})] (\operatorname{suc } n) m \mapsto \operatorname{suc } (n+m) \end{cases}$$

From Case Trees to Eliminators

- Generic Representation Case Tree
- Unification Algorithm
- Evaluation Function
- Discussion

Generic Representation Case Tree

Case Trees Represent Functions

Generic Representation Case Tree: Telescopes

• Telescope:

data Te	les	соре	e :	. N →	Set	1	whe	re					
nil		Tele	esc	ope (9								
cor	s :	<mark>(</mark> S	:	Set)	(E	:	S →	Telescope	n)	→	Telescope	(suc	n)

• Interpretation:

\llbracket]telD	: (Δ : Telescope n) → Set
\llbracket	nil]telD = ⊤
\llbracket	cons s	S E]]telD = Σ [s \in S] [[E s]]telD

Generic Representation Case Tree: Telescopes

• Case Tree Type:

data CaseTree (Δ : Telescope n)(T : [Δ]telD \rightarrow Set ℓ) : Set (lsuc ℓ)

```
tail : (n : \mathbb{N}) \rightarrow \text{Vec A (suc n)} \rightarrow \text{Vec A n}
tail n (cons n x xs) = xs
CTTail : CaseTree (n \in \mathbb{N}, xs \in \text{Vec A (suc n)}, nil) (\lambda \{ (n, xs, tt) \rightarrow \text{Vec A n} \})
```


Generic Representation Case Trees: Data Types

- Number of constructors (arguments)
- Universe of data type descriptions

data Vec (A : Set) : $N \rightarrow Set$ where nil : Vec A zero cons : (n : N) \rightarrow A \rightarrow Vec A n \rightarrow Vec A (suc n)

```
data ConDesc (is : Telescope i_n) : N \rightarrow Set_1 where

one' : [[ is ]]telD \rightarrow ConDesc is 0

\Sigma' : (S : Set) \rightarrow (D : S \rightarrow ConDesc is a_n) \rightarrow ConDesc is (suc a_n)

\times' : [[ is ]]telD \rightarrow ConDesc is a_n \rightarrow ConDesc is (suc a_n)

DataDesc : Telescope i_n \rightarrow N \rightarrow Set_1

DataDesc is c_n = Fin \ c_n \rightarrow \Sigma N (ConDesc is)
```


Unification

head : (n : N) → Vec A (suc n) → A
head n (cons n x xs) = x
tail : (n : N) → Vec A (suc n) → Vec A n
tail n (cons n x xs) = xs

$$(n : \mathbb{N})(\mathsf{suc} \ n \stackrel{?}{=} \mathsf{zero})$$

Constructor nil:

$$(n\ m: {\mathbb N})({ t suc}\ n \stackrel{?}{=} { t suc}\ m)$$

Constructor cons:

Unification

 $\texttt{solution:}(x:A)(e:x\equiv_A t)\simeq ()$

 $\texttt{deletion:} (e:t\equiv_A t)\simeq ()$

 $\texttt{injectivity}_{\mathsf{c}}:(\mathsf{c}\ \overline{s}\equiv_{\mathsf{D}}\mathsf{c}\ \overline{t})\simeq(\overline{s}\equiv_{\Delta_{\mathsf{c}}}\overline{t})$

 $\texttt{conflict}_{c_1,c_2} : (c_1 \ \overline{s} \equiv_{\mathtt{D}} c_2 \ \overline{t}) \simeq \bot$

 $(\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} m) \simeq (n \equiv_{\mathbb{N}} m)$

$$(n:\mathbb{N})(\texttt{zero}\equiv_{\mathbb{N}}\texttt{suc}\ n)\simeq\bot$$

Unification Algorithm

unifyTel	: {Δ :	: Telescope n} (u :	Unification Δ) $\rightarrow \Sigma$ N Telescope	
unify	: {\ :	: Telescope <mark>n} (u</mark> :	Unification Δ) \rightarrow [[Δ]]telD \rightarrow [[proj ₂ (unifyTel u)]]telD	
unify'	: {\ :	: Telescope n} (u :	Unification Δ) \rightarrow [[proj ₂ (unifyTel u)]]telD \rightarrow [[Δ]]telD	

Evaluation Function

```
eval : {Δ : Telescope n}{T : [[Δ]]telD → Set {}
  (ct : CaseTree Δ T) (args : [[Δ]]telD)
  → T args
```

- Leaf : clause of function
- Node: case split
 - Eliminate variable
 - Basic analysis
 - All telescope functions are section-retraction pairs

Discussion

- What is possible?
 - Course-of-value iteration
 - Higher-dimensional unification
- What is not possible?
 - Cycle rule (without a lot of extra work)
 - Not indexed data types
- Extending Agda?

Generic Representation Case Tree

Evaluation Function

```
eval : {\Delta : Telescope n}{T : [\Delta] telD \rightarrow Set \ell} \rightarrow
  (ct : CaseTree Δ T) (args : [ Δ ]telD)
  → T args
eval (leaf f) args = f args
eval {T = T} (node {is = is} {D = D} p bs) args
     = case-\mu D (\lambda d' x' \rightarrow (d' , x') \equiv (d , ret) \rightarrow T args) cs d ret refl where
  d : [ is ]telD
  d = proj_1 (args \Sigma[p])
  ret : µ D d
  ret = proj_2 (args \Sigma[p])
  cs : (d' : [ is ]telD) (x : [ D ] (\mu D) d') \rightarrow (d' , (x)) \equiv (d , ret) \rightarrow T args
```

